74 MATHEMATICS

22. $\cot x \cot 2x - \cot 2x \cot 3x - \cot 3x \cot x = 1$

23.
$$\tan 4x = \frac{4\tan x (1 - \tan^2 x)}{1 - 6\tan^2 x + \tan^4 x}$$
 24. $\cos 4x = 1 - 8\sin^2 x \cos^2 x$

25. $\cos 6x = 32 \cos^6 x - 48 \cos^4 x + 18 \cos^2 x - 1$

3.5 Trigonometric Equations

Equations involving trigonometric functions of a variable are called *trigonometric* equations. In this Section, we shall find the solutions of such equations. We have already learnt that the values of $\sin x$ and $\cos x$ repeat after an interval of 2π and the values of $\tan x$ repeat after an interval of π . The solutions of a trigonometric equation for which $0 \le x < 2\pi$ are called *principal solutions*. The expression involving integer 'n' which gives all solutions of a trigonometric equation. We shall use 'Z' to denote the set of integers.

The following examples will be helpful in solving trigonometric equations:

Example 18 Find the principal solutions of the equation $\sin x = \frac{\sqrt{3}}{2}$

Solution We know that,
$$\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
 and $\sin \frac{2\pi}{3} = \sin \left(\pi - \frac{\pi}{3}\right) = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$

Therefore, principal solutions are $x = \frac{\pi}{3}$ and $\frac{2\pi}{3}$.

Example 19 Find the principal solutions of the equation $\tan x = -\frac{1}{\sqrt{3}}$.

Solution We know that,
$$\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$$
. Thus, $\tan \left(\pi - \frac{\pi}{6}\right) = -\tan \frac{\pi}{6} = -\frac{1}{\sqrt{3}}$

and

$$\tan\left(2\pi - \frac{\pi}{6}\right) = -\tan\frac{\pi}{6} = -\frac{1}{\sqrt{3}}$$

Thus

 $\tan\frac{5\pi}{6} = \tan\frac{11\pi}{6} = -\frac{1}{\sqrt{3}}.$

Therefore, principal solutions are $\frac{5\pi}{6}$ and $\frac{11\pi}{6}$.

We will now find the general solutions of trigonometric equations. We have already

seen that:

 $\sin x = 0$ gives $x = n\pi$, where $n \in \mathbb{Z}$

$$\cos x = 0$$
 gives $x = (2n + 1)\frac{\pi}{2}$, where $n \in \mathbb{Z}$.

We shall now prove the following results:

Theorem 1 For any real numbers *x* and *y*,

sin x = sin y implies
$$x = n\pi + (-1)^n y$$
, where $n \in \mathbb{Z}$

Proof If $\sin x = \sin y$, then

$$\sin x - \sin y = 0$$
 or $2\cos \frac{x+y}{2}\sin \frac{x-y}{2} = 0$

which gives

$$\cos\frac{x+y}{2} = 0 \text{ or } \sin\frac{x-y}{2} = 0$$

Therefore

$$\frac{x+y}{2} = (2n+1)\frac{\pi}{2} \text{ or } \frac{x-y}{2} = n\pi, \text{ where } n \in \mathbb{Z}$$

i.e.

 $x = (2n + 1) \pi - y$ or $x = 2n\pi + y$, where $n \in \mathbb{Z}$ $x = (2n + 1)\pi + (-1)^{2n+1} y$ or $x = 2n\pi + (-1)^{2n} y$, where $n \in \mathbb{Z}$.

Hence

Combining these two results, we get

 $x = n\pi + (-1)^n y$, where $n \in \mathbb{Z}$.

Theorem 2 For any real numbers x and y, $\cos x = \cos y$, implies $x = 2n\pi \pm y$, where $n \in \mathbb{Z}$

Proof If $\cos x = \cos y$, then

$$\cos x - \cos y = 0$$
 i.e., $-2\sin \frac{x+y}{2}\sin \frac{x-y}{2} = 0$

Thus

$$\sin\frac{x+y}{2} = 0 \quad \text{or} \quad \sin\frac{x-y}{2} = 0$$

i.e.

Therefore $\frac{x+y}{2} = n\pi$ or $\frac{x-y}{2} = n\pi$, where $n \in \mathbb{Z}$ $x = 2n\pi - y$ or $x = 2n\pi + y$, where $n \in \mathbb{Z}$

Hence

 $x = 2n\pi \pm y$, where $n \in \mathbb{Z}$

Theorem 3 Prove that if x and y are not odd mulitple of $\frac{\pi}{2}$, then tan x = tan y implies $x = n\pi + y$, where $n \in \mathbb{Z}$

76 MATHEMATICS

Proof If $\tan x = \tan y$, then $\tan x - \tan y = 0$ $\sin x \, \cos y - \cos x \, \sin y = 0$ or $\cos x \cos y$ $\sin(x - y) = 0$ which gives (Why?) Therefore $x - y = n\pi$, i.e., $x = n\pi + y$, where $n \in \mathbb{Z}$ **Example 20** Find the solution of $\sin x = -\frac{\sqrt{3}}{2}$. Solution We have $\sin x = -\frac{\sqrt{3}}{2} = -\sin\frac{\pi}{3} = \sin\left(\pi + \frac{\pi}{3}\right) = \sin\frac{4\pi}{3}$ $\sin x = \sin \frac{4\pi}{3}$, which gives Hence $x = n\pi + (-1)^n \frac{4\pi}{3}$, where $n \in \mathbb{Z}$. **The Note** $\frac{4\pi}{3}$ is one such value of x for which $\sin x = -\frac{\sqrt{3}}{2}$. One may take any other value of x for which sin $x = -\frac{\sqrt{3}}{2}$. The solutions obtained will be the same although these may apparently look different. **Example 21** Solve $\cos x = \frac{1}{2}$. **Solution** We have, $\cos x = \frac{1}{2} = \cos \frac{\pi}{3}$ $x = 2n\pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$. Therefore **Example 22** Solve $\tan 2x = -\cot\left(x + \frac{\pi}{3}\right)$.

Solution We have, $\tan 2x = -\cot\left(x + \frac{\pi}{3}\right) = \tan\left(\frac{\pi}{2} + x + \frac{\pi}{3}\right)$

or

$$\tan 2x = \tan\left(x + \frac{5\pi}{6}\right)$$

Therefore

$$2x = n\pi + x + \frac{5\pi}{6}$$
, where $n \in \mathbb{Z}$

or

$$x = n\pi + \frac{5\pi}{6}$$
, where $n \in \mathbb{Z}$.

Example 23 Solve $\sin 2x - \sin 4x + \sin 6x = 0$.

Solution The equation can be written as

 $\sin 6x + \sin 2x - \sin 4x = 0$ $2\sin 4x \cos 2x - \sin 4x = 0$

or $2\sin 4x \cos 2x - \sin 4x =$ i.e. $\sin 4x (2\cos 2x - 1) = 0$

Therefore $\sin 4x = 0$ or $\cos 2x = \frac{1}{2}$

i.e. $\sin 4x = 0$ or $\cos 2x = \cos \frac{\pi}{3}$

Hence $4x = n\pi$ or $2x = 2n\pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$

i.e.

$$\frac{n\pi}{4}$$
 or $x = n\pi \pm \frac{\pi}{6}$, where $n \in \mathbb{Z}$

Example 24 Solve $2 \cos^2 x + 3 \sin x = 0$

Solution The equation can be written as

x =

$2\left(1-\sin^2 x\right)+3\sin x=0$
$2\sin^2 x - 3\sin x - 2 = 0$
$(2\sin x + 1)(\sin x - 2) = 0$
$\sin x = -\frac{1}{2} \text{or} \sin x = 2$
$\sin x = 2$ is not possible (Why?)
$\sin x = -\frac{1}{2} = \sin \frac{7\pi}{6}.$

Hence, the solution is given by

$$x = n\pi + (-1)^n \frac{7\pi}{6}$$
, where $n \in \mathbb{Z}$.

EXERCISE 3.4

Find the principal and general solutions of the following equations:

- 1. $\tan x = \sqrt{3}$ 2. $\sec x = 2$ 3. $\cot x = -\sqrt{3}$ 4. $\csc x = -2$ Find the general solution for each of the following equations:
- 5. $\cos 4x = \cos 2x$ 6. $\cos 3x + \cos x - \cos 2x = 0$
- 7. $\sin 2x + \cos x = 0$ 8. $\sec^2 2x = 1 - \tan 2x$
- 9. $\sin x + \sin 3x + \sin 5x = 0$

Miscellaneous Examples

Example 25 If $\sin x = \frac{3}{5}$, $\cos y = -\frac{12}{13}$, where x and y both lie in second quadrant, find the value of $\sin (x + y)$.

Solution We know that

$$\sin (x + y) = \sin x \cos y + \cos x \sin y \qquad \dots (1)$$
$$\cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{16}{25}$$

Now

Therefore $\cos x = \pm \frac{4}{5}$.

Since x lies in second quadrant, $\cos x$ is negative.

Hence $\cos x = -\frac{4}{5}$

Now $\sin^2 y = 1 - \cos^2 y = 1 - \frac{144}{169} = \frac{25}{169}$

i.e.

 $\sin y = \pm \frac{5}{13}.$

Since *y* lies in second quadrant, hence sin *y* is positive. Therefore, sin $y = \frac{5}{13}$. Substituting the values of sin *x*, sin *y*, cos *x* and cos *y* in (1), we get