74 MATHEMATICS

22. cot *x* cot $2x - \cot 2x \cot 3x - \cot 3x \cot x = 1$

23.
$$
\tan 4x = \frac{4\tan x (1-\tan^2 x)}{1-6\tan^2 x + \tan^4 x}
$$
 24. $\cos 4x = 1 - 8\sin^2 x \cos^2 x$

25. $\cos 6x = 32 \cos^6 x - 48 \cos^4 x + 18 \cos^2 x - 1$

3.5 Trigonometric Equations

Equations involving trigonometric functions of a variable are called *trigonometric equations*. In this Section, we shall find the solutions of such equations. We have already learnt that the values of sin *x* and cos *x* repeat after an interval of 2π and the values of tan *x* repeat after an interval of π. The solutions of a trigonometric equation for which $0 \le x < 2\pi$ are called *principal solutions*. The expression involving integer '*n*' which gives all solutions of a trigonometric equation is called the *general solution***.** We shall use '**Z**' to denote the set of integers.

The following examples will be helpful in solving trigonometric equations:

.

Example 18 Find the principal solutions of the equation $\sin x = \frac{\sqrt{3}}{2}$ 2

Solution We know that,
$$
\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}
$$
 and $\sin \frac{2\pi}{3} = \sin \left(\pi - \frac{\pi}{3} \right) = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$.

Therefore, principal solutions are π $x = \frac{\pi}{3}$ and 2π $\frac{1}{3}$.

Example 19 Find the principal solutions of the equation $\tan x = -$ 1 $\frac{1}{3}$.

Solution We know that,
$$
\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}
$$
. Thus, $\tan \left(\pi - \frac{\pi}{6} \right) = -\tan \frac{\pi}{6} = -\frac{1}{\sqrt{3}}$

and

$$
\tan\left(2\pi - \frac{\pi}{6}\right) = -\tan\frac{\pi}{6} = -\frac{1}{\sqrt{3}}
$$

Thus $\tan \frac{5\pi}{6} = \tan \frac{11\pi}{6} = -\frac{1}{6}$ 6 6 $\sqrt{3}$ $=$ tan $\frac{11\pi}{6} = -\frac{1}{\sqrt{2}}$.

Therefore, principal solutions are 5π $\frac{1}{6}$ and 11π $\frac{1}{6}$.

We will now find the general solutions of trigonometric equations. We have already

 y^{2n} *y*, where *n* $\in \mathbb{Z}$.

seen that:

 $\sin x = 0$ gives $x = n\pi$, where $n \in \mathbb{Z}$

$$
\cos x = 0 \text{ gives } x = (2n + 1)\frac{\pi}{2}, \text{ where } n \in \mathbb{Z}.
$$

We shall now prove the following results:

Theorem 1 For any real numbers *x* and *y*,

$$
\sin x = \sin y \text{ implies } x = n\pi + (-1)^n y, \text{ where } n \in \mathbb{Z}
$$

Proof If $\sin x = \sin y$, then

$$
\sin x - \sin y = 0
$$
 or $2\cos \frac{x+y}{2} \sin \frac{x-y}{2} = 0$

which gives cos

$$
\frac{x+y}{2} = 0
$$
 or $\sin \frac{x-y}{2} = 0$

Therefore

$$
\frac{x+y}{2} = (2n+1)\frac{\pi}{2} \text{ or } \frac{x-y}{2} = n\pi, \text{ where } n \in \mathbb{Z}
$$

i.e. $x = (2n + 1) \pi - y$ or $x = 2n\pi + y$, where $n \in \mathbb{Z}$

Hence
$$
x = (2n + 1)\pi + (-1)^{2n+1} y
$$
 or $x = 2n\pi + (-1)^{2n}$
Combining these two results, we get

 $x = n\pi + (-1)^n y$, where $n \in \mathbb{Z}$.

Theorem 2 For any real numbers *x* and *y*, cos $x = \cos y$, implies $x = 2n\pi \pm y$, where $n \in \mathbb{Z}$

Proof If $\cos x = \cos y$, then

$$
\cos x - \cos y = 0
$$
 i.e., $-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2} = 0$

Therefore

Thus sin *x* + *y* $\frac{1}{2} = 0$ or sin *x* − *y* $\frac{1}{2}$ = 0 *x* + *y x* − *y*

 $\frac{1}{2}$ = $n\pi$ or $\frac{1}{2}$ = $n\pi$, where $n \in \mathbb{Z}$ i.e. $x = 2n\pi - y$ or $x = 2n\pi + y$, where $n \in \mathbb{Z}$

Hence $x = 2n\pi \pm y$, where $n \in \mathbb{Z}$

Theorem 3 Prove that if *x* and *y* are not odd mulitple of π $\frac{1}{2}$, then

$$
\tan x = \tan y
$$
 implies $x = n\pi + y$, where $n \in \mathbb{Z}$

76 MATHEMATICS

Proof If tan $x = \tan y$, then $\tan x - \tan y = 0$

or

 $\sin x \cos y - \cos x \sin y$ cos cos *x y* $= 0$

which gives $\sin (x - y) = 0$ (Why?)

Therefore $x - y = n\pi$, i.e., $x = n\pi + y$, where $n \in \mathbb{Z}$

Example 20 Find the solution of $\sin x = -\frac{\sqrt{3}}{2}$ 2

Solution We have $\sin x = -\frac{\sqrt{3}}{2}$ 2 = $\sin \frac{\pi}{6} = \sin \left(\pi + \frac{\pi}{6} \right) = \sin \frac{4\pi}{6}$ 3 3 3 $-\sin\frac{\pi}{3} = \sin\left(\pi + \frac{\pi}{3}\right) =$

Hence $\sin x =$ $\sin \frac{4\pi}{2}$ $\frac{1}{3}$, which gives

$$
x = n\pi + (-1)^n \frac{4\pi}{3}, \text{ where } n \in \mathbb{Z}.
$$

 $\frac{4\pi}{3}$ $\frac{\pi}{3}$ is one such value of *x* for which sin $x = -\frac{\sqrt{3}}{2}$ $x = -\frac{\sqrt{2}}{2}$. One may take any other value of *x* for which $\sin x = -$ 3 2 . The solutions obtained will be the same although these may apparently look different.

.

Example 21 Solve $\cos x =$ 1 $\frac{1}{2}$.

Solution We have, $\cos x = \frac{1}{2} = \cos \frac{\pi}{2}$ 2 3 $x=\frac{1}{2}$ =

Therefore $2n\pi \pm \frac{\pi}{2}$ $x = 2n\pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$.

Example 22 Solve $\tan 2x = -\cot\left(x + \frac{\pi}{2}\right)$ 3 $x = -\cot\left(x + \frac{\pi}{3}\right)$. **Solution** We have, $\tan 2x = -\cot\left(x + \frac{\pi}{2}\right)$ 3 $x = -\cot\left(x + \frac{\pi}{3}\right) =$ π π tan 2 3 $\left(\frac{\pi}{2}+x+\frac{\pi}{3}\right)$

$$
\overline{\text{or}}
$$

$$
\tan 2x = \tan \left(x + \frac{5\pi}{6} \right)
$$

Therefore

$$
2x = n\pi + x + \frac{5\pi}{6}
$$
, where $n \in \mathbb{Z}$

or

$$
x = n\pi + \frac{5\pi}{6}
$$
, where $n \in \mathbb{Z}$.

Example 23 Solve sin $2x - \sin 4x + \sin 6x = 0$.

Solution The equation can be written as

 $\sin 6x + \sin 2x - \sin 4x = 0$

or $2 \sin 4x \cos 2x - \sin 4x = 0$

i.e. $\sin 4x(2\cos 2x - 1) = 0$

Therefore $\sin 4x = 0$ $\cos 2x = \frac{1}{2}$ 2 $x =$

i.e. π $\sin 4x = 0$ or $\cos 2x = \cos$ 3 $x = 0$ or $\cos 2x =$

Hence $4x=n\pi$ or $2x=2n\pi \pm \frac{\pi}{2}$ $x=n\pi$ or $2x = 2n\pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$

i.e.

$$
x = \frac{n\pi}{4}
$$
 or $x = n\pi \pm \frac{\pi}{6}$, where $n \in \mathbb{Z}$.

Example 24 Solve $2 \cos^2 x + 3 \sin x = 0$

Solution The equation can be written as

Hence, the solution is given by

$$
x = n\pi + (-1)^n \frac{7\pi}{6}
$$
, where $n \in \mathbb{Z}$.

EXERCISE 3.4

Find the principal and general solutions of the following equations:

- **1.** $\tan x = \sqrt{3}$ **2.** $\sec x = 2$ **3.** cot $x = -\sqrt{3}$ **4.** cosec $x = -2$ Find the general solution for each of the following equations:
- **5.** $\cos 4 x = \cos 2x$ **6.** $\cos 3x + \cos x \cos 2x = 0$
- **7.** $\sin 2x + \cos x = 0$ 8. $sec^2 2x = 1 - tan 2x$
- **9.** $\sin x + \sin 3x + \sin 5x = 0$

Miscellaneous Examples

Example 25 If $\sin x =$ 3 $\frac{1}{5}$, cos *y* = − 12 $\frac{1}{13}$, where *x* and *y* both lie in second quadrant, find the value of $sin(x + y)$.

Solution We know that

Now
$$
\cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{16}{25}
$$
 ... (1)
\n
$$
\cos^2 x = 1 - \sin^2 x = 1 - \frac{9}{25} = \frac{16}{25}
$$

Therefore $\cos x = \pm$

5 . Since *x* lies in second quadrant, cos *x* is negative.

4

Hence $\cos x = -$

5 Now $\sin^2 y = 1 - \cos^2 y = 1 -$ 144 169 25 169 =

i.e. $\sin y = \pm$ 5 $\frac{1}{13}$.

Since *y* lies in second quadrant, hence sin *y* is positive. Therefore, sin *y* = 5 $\frac{1}{13}$. Substituting the values of $\sin x$, $\sin y$, $\cos x$ and $\cos y$ in (1), we get